

Electronic Postmark™
Service

SDK V1

USPS© Secure Digital Platform
Application Programming Interface

User’s Guide

Version 1.1H (03/08/2017)

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 2 of 35

Table of Contents
1. PURPOSE .. 3

2. ELECTRONIC POSTMARK SYSTEM OVERVIEW ... 4
2.1 EPM SERVICE OVERVIEW ... 4

3. USE CASES ... 5
3.1 GENERAL ELECTRONIC DATA POSTMARKING ... 5
3.2 EPM GENERATION .. 5

3.2.1 Process Flow .. 5
3.3 EPM VALIDATION ... 6

3.3.1 Process Flow .. 6
3.4 TRUSTMARK VALIDATION ... 7

3.4.1 Process Flow .. 7
3.5 QUERY EPM VALIDATION RESULTS .. 8

3.5.1 Process Flow .. 8

4. ELECTRONIC POSTMARK (EPM) DATA STRUCTURES AND PROCESSING 9
4.1 EPM DATA STRUCTURE AND FORMAT .. 9

4.1.1 Example EPM XML response ... 9
4.1.2 Electronic Postmark ... 11
4.1.3 EPM Trustmark image ... 14

5. WEB SERVICES ... 15
5.1 SOFTWARE DEVELOPMENT KIT (SDK) .. 15

5.1.1 Requirements .. 15
5.2 EPM SERVICE SECURITY ... 16

5.2.1 Using the keystore with the Java SDK.. 16
5.2.2 Using the certificate with the C# / .net SDK ... 17

5.3 SDK INTERFACE .. 19
5.3.1 Process to use SDK .. 21

5.4 TROUBLE SHOOTING COMMON ERROR CONDITIONS ... 25
5.4.1 Issues with your certificate ... 25
5.4.2 Issues with your message ... 26
5.4.3 Validation error for EPM service V1 ... 26

5.5 USING THE EPM WEB SERVICE .. 27
5.5.1 Customer Registration .. 27

6. APPENDIX A – EPM XML SCHEMAS ... 28
6.1 LINKS TO WSDL AND SCHEMA LOCATIONS .. 28

7. APPENDIX B - SETUP THE SAMPLE JAVA CLIENT USING THE SDK IN ECLIPSE 29
7.1 STEPS .. 29

8. APPENDIX C – SETUP THE SAMPLE .NET CLIENT USING VISUAL STUDIO 2015 34
8.1 STEPS .. 34

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 3 of 35

1. Purpose
The purpose of this Interface Control Document is to provide a detailed description of the interface
between the USPS EPM™ web service and client systems. This document describes the methods
to access EPM functionality as well as the general behavior of the system.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 4 of 35

2. Electronic Postmark System Overview
The Electronic Postmark System provides the means to digitally sign and timestamp various
types of electronic data through an official USPS authority. This process results in the creation of
a USPS Electronic Postmark (EPM). While many forms of secure communication provide security
for electronic data in transit, the EPM provides authenticity, data integrity, and non-repudiation for
electronic data in transit and at rest. This allows the data to be stored and/or transmitted with
assurance of integrity and a verifiable audit trail.

2.1 EPM Service Overview
The EPM service supports both EPM generation and EPM validation operations. An EPM can
generally be applied to most forms of electronic data. The EPM can be used to verify the integrity
and authenticity of electronic data. When generating an EPM, EPM data is returned to the EPM
service client. When validating an EPM, an indicator of EPM validity is returned to the EPM
service client.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 5 of 35

3. Use Cases
3.1 General Electronic Data Postmarking
A USPS EPM customer provides its end users with the ability to store and/or transmit documents
and other forms of electronic data. The electronic data may be sensitive and/or valuable to the
end users so the customer needs to be able to ensure non-repudiation and authenticity as part of
its storage and transmission functionality. In order to ensure non-repudiation and authenticity, an
EPM must be generated for the electronic data through a USPS approved authority.

3.2 EPM Generation
The customer utilizes a service API that accepts the metadata and electronic payload as inputs in
order to generate the EPM. Once inputs are received, the system generates a digital hash over
the payload data, combines the hash, metadata, and a timestamp into an EPM data structure,
then digitally signs the EPM data structure and stores it for audit purposes. The EPM data
structure is then returned to the customer so that the customer can save the EPM to a local file or
data store along with the original data and/or transmit both to a 3rd party. If the customer submits
invalid or insufficient data, the EPM is not generated and the system returns an error to the
customer.

3.2.1 Process Flow

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 6 of 35

3.3 EPM validation
A customer may validate data against it’s corresponding EPM in order to ensure that the data has
not been altered in any way. The customer utilizes a service API that accepts payload data and an
EPM string as inputs. An indicator of EPM validity is then returned to the customer. The system
returns an error if the customer submits invalid or insufficient data.

3.3.1 Process Flow

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 7 of 35

3.4 Trustmark validation
The EPM recipient also receives a trustmark image. Like the EPM, the trustmark image may also
be used to validate that its corresponding data has not been altered in any way. The customer
utilizes a service API that accepts payload data and the trustmark image as inputs. An indicator of
trustmark validity is then returned to the customer. The system returns an error if the customer
submits invalid or insufficient data.

3.4.1 Process Flow

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 8 of 35

3.5 Query EPM validation results
A customer may query for validation requests made for an EPM previously generated in order to
confirm that the recipient received a valid EPM and was able to successfully validate it. The
customer utilizes a service API that accepts transaction number, billing account ID and requester
account ID as inputs. The system uses these inputs to fetch all related validation transactions and
then depending upon the operation used, returns either the most recent validation transaction, or
all of the validation transactions for the provided EPM. The system returns an error if the customer
submits invalid or insufficient data.
Note: the validations results are specific to the EPM. If multiple EPMs are generated for a
particular file the validations list will only return validations for the specific EPM that is sent.

3.5.1 Process Flow

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 9 of 35

4. Electronic Postmark (EPM) Data Structures and Processing
An EPM is generated to guarantee non-repudiation and authenticity of a set of data, referred to as
the EPM Payload. The EPM Payload represents almost any block of electronic data that can be
expressed as a finite-size array of bytes. EPM Payload data may exist in almost any electronic
form, including structured text, documents, images, binary executables, and compressed
archive files.

4.1 EPM Data Structure and Format
The EPM is a set of XML structured/formatted data defined in the USPS EPM XML Schema. At a
high level, the EPM data structure consists of the following components:

• EPM attributes
• System audit information
• EPM payload metadata

An EPM does not contain actual EPM Payload data. An EPM exists external to the EPM Payload
for which it was generated. In order to ensure that an EPM is associated to the correct EPM
Payload, the EPM customer must make sure to store and/or transmit the EPM Payload data and
EPM in such a way that the relationship between the two is maintained. See the EPM verification
section below for more details on the standards for associating and transmitting EPM Payload
data and EPMs as files.

IMPORTANT NOTE: In order to ensure the continuing validity of an EPM, both the EPM and
the EPM Payload data must be stored and/or transmitted without modification. The EPM
Payload data cannot be modified in any way that might alter the raw binary contents of the
EPM Payload. For example, changing even a single character in a text file or a single
property of an image or document will invalidate the EPM. Also, if the EPM Payload is a file,
then the filename can only be altered if the filename is not included as part of the file contents
(as some applications include the filename in properties which are contained in the contents
of the file). Similarly, the characters and formatting of an EPM cannot be altered in any way
from the point where the EPM is returned in a web service response.

4.1.1 Example EPM XML response

<ElectronicPostmark xmlns="http://des.usps.com/model/shared/v2"
xmlns:ns2="http://www.w3.org/2000/09/xmldsig#"
payloadHashValue="Oum99SI7NC0jSWHPVtfTY4MtqzgPLV3TCb2dmXMHJWOnO8UccVB38jn6XHWLplK
vJe++0o3tDlPg4wTxKpxpJQ==" timestamp="2014-09-12T15:27:49.539Z" transactionNumber="7">
 <PayloadMetadata epmPayloadCategory="HEALTH_CARE">
 <HealthcareMetadata acceptAcknowledgmentType="Q"
alternateCharacterSetHandlingScheme="V" applicationAcknowledgmentType="R" characterSet="T"
continuationPointer="P" countryCode="US" encodingCharacters="?" fieldSeparator="|"
messageControlId="L" messageDateTime="I" messageProfileId="W" messageType="K"
principalLanguageOfMessage="U" processingId="M" receivingApplication="E" receivingFacility="F"
receivingNetworkAddress="H" receivingResponsibleOrganization="G" security="J" sendingApplication="A"
sendingFacility="B" sendingNetworkAddress="D" sendingResponsibleOrganization="C"
sequenceNumber="O" versionId="N"/>
 <MailPieceMetadata mailerId="123456" providerId="123456">
 <Origin emailAddress="edsmith@mail.com" ipV4Address="192.168.0.1"
ipV6Address="FE80:0000:0000:0000:0202:B3FF:FE1E:8329" macAddress="01:23:45:67:89:ab"

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 10 of 35

originatorId="1" personFirstName="Ed" personLastName="Smith" personMiddleName="A"
phoneNumber="555-555-4444" smsNumber="555-555-4444">
 <Address addressLocation="123 Main Street" addressType="DOMESTIC"
attentionLine="Ed" countryCode="US" locality="Anywhere" postalCode="29464" stateOrRegion="SC"/>
 </Origin>
 <Recipient emailAddress="jdoe@mail.com" personFirstName="John"
personLastName="Doe" personMiddleName="A" smsNumber="1231231234">
 <Address addressLocation="2387 Clements Ferry Road"
addressType="DOMESTIC" attentionLine="John" countryCode="US" locality="Charleston"
postalCode="29492" stateOrRegion="SC"/>
 </Recipient>
 </MailPieceMetadata>
 </PayloadMetadata>
 <SystemAuditInformation desCategoryCode="A" desFederalAgencyCode="123"
desFederalAgencySubCode="45678" desSerialNumber="AB-12345-CD-67890"
desSoftwareVersion="1.0"/>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"/>
 <SignatureMethod Algorithm="http://www.w3.org/2001/04/xmldsig-more#rsa-
sha512"/>
 <Reference URI="">
 <Transforms>
 <Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha512"/>

 <DigestValue>9pUCGTB2wEgQUXBY9z/eQN6Crq9xWyqejXztXEEOAPyzZ2qMMJ8fiFlISXfGFtgJZ
0fRIjTpNeBvaE6sCQOGlA==</DigestValue>
 </Reference>
 </SignedInfo>

 <SignatureValue>URaqC61PQj9R4xLSAwskbDn5aeck4EZH5HjqPSBEcOwC8FjjsXxw9K7WUfRM
TrfKthWbdM3qhO0cUWdW5XIt/pTBcVK74qsyOPYfpX6sbUz0HahDJ+M2RP8dYybX0KfJ1UMe6Vk5hqbaU
pL3iMgfRapr8aysDH1735563bRGl7rE/ZExHDV3m8Q2m80amzlcAgJWcTjxCiELgrxpJ1+FFBSaBXXR0/Tz0
4XjPNCcRaJ8MzjRKOY0yiMLtibtyRfkjREbmQI7jRdQJnImLk7vL41i6/NecyCz5/0c5zl60oi1KK2i2v/8hDZQTj
2kQaiYxV6L2AN64y1XUOeKjlHrpu3d8WdkJlBUwqTkiEoQChwrQ479gwZB8vTAzhs5dP2WogUQhtfzb+UD
Ba+gS3EqrJR6xuHmqdgM747DqKtfnN7dGYnkhGYt9pbVH03HEn+YcHDnrPSEJYuPC39pi47u82unznDfZ9
skjhIx2YT3X8qdslBUblWiHo8D4pk2BTKg8+ofirc6EBrdb+vhPQ9ubbRMlp8eiSKJ2RoSpYRPyHy/UDdtz0ro
mYXSBJcJdNV3tRi0mx5O3NSLLj3z7j1IDECXx6yKlt6LiHlVyxJ2ItmxZroZ7/VOH9cG/KET1/Enb1oQhbMCb3
19HUjB78fSMq6VEdZKU0uokOIv9G6F6sU=</SignatureValue>
 <KeyInfo>
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>CN=Electronic Postmark Authority,OU=Digital
Evidencing System,O=United States Postal Service,L=Washington,ST=DC,C=US</X509IssuerName>
 <X509SerialNumber>1927522781</X509SerialNumber>
 </X509IssuerSerial>
 </X509Data>
 </KeyInfo>
 </Signature>
</ElectronicPostmark>

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 11 of 35

4.1.2 Electronic Postmark
The fields included in the EPM XML data structure are outlined below. For more information on
exact data type and format restrictions, data content limitations or enumeration values, and
requirements on the order of appearance for each of the attributes and elements listed below,
please refer to the ElectronicPostmark definition in the USPS EPM XML Schema document.

Field Name Attribute
/Element Required Description

Element: ElectronicPostmark
payloadHashValue

Attribute Y

The EPM Payload data hash
value is a SHA512
cryptographic hash that is
generated over the base 64
encoded EPM Payload data.
Consumers of the EPM can
use this value to determine
whether or not the payload
contents has changed since
the EPM was generated,
ensuring non-repudiation.

timestamp

Attribute Y

The EPM timestamp indicates
the date and time (in UTC
format) when the EPM was
created.

transactionNumber

Attribute Y

The current count of the
number of transactions
processed by a particular EPM
customer

testTransaction

Attribute N

Indicates whether or not the
current EPM transaction is to
be considered a test
transaction for payment
purposes. Will only be
present in the EPM response
if the current transaction is a
test transaction.

Signature

Element Y

The EPM digital signature is
generated in the form of an
industry standard XML Digital
Signature based on the W3C
XML Digital Signature
recommendation found here:
http://www.w3.org/TR/xmlds
ig-core/. The digital signature
is generated over the entire
EPM and its contents and is
used to provide non-

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 12 of 35

Field Name Attribute
/Element Required Description

repudiation and authenticity
of the EPM and the data it
contains.

PayloadMetadata

Element Y

The EPM payload metadata
consists of various attributes
about the data set for which
the EPM is being generated.
This provides context to the
payload data, to the parties
involved with the payload
data creation, and possibly to
the parties involved with its
use. EPM consumers can
potentially use this
information to identify the
original owner/creator of the
payload data, identify
intended recipients for the
data, and determine the
general type of data that was
postmarked. More detail on
the individual metadata
attributes is provided in the
request details section of the
document below.

SystemAuditInformation

Element Y

System Audit Information
includes various attributes
about the EPM and the DES
system that created the EPM.
This data is added by the
system during the generation
process and is used for
transaction identification,
system identification, and
other audit purposes.

Element: ElectronicPostmark.SystemAuditInformation
desSerialNumber Attribute Y DES serial number
desSoftwareVersion Attribute Y DES software version
desCategoryCode

Attribute N

Indicates type of payment
method:
‘C’ = Commercial
‘G’ = Qualifying federal
agency
‘P’ = Post office
‘A’ = Contract station

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 13 of 35

Field Name Attribute
/Element Required Description

‘M’ = Military
‘S’ = Specimen meter
‘B’ = Same day billing
‘L’ = Don’t have an account
using a shared device
‘T’ = Multiple shared PES
‘X’ = Reserviced for USPS use
only

desFederalAgencyCode

Attribute N

Specimen = 500

Contract Station = 600

Post Office = 700, 400, 410,
420

Military = 800

Commercial = ‘Blank’

Same day billing = ‘Blank’

Internet Based Delivery
Service = 900

desFederalAgencySubCode

Attribute N

If Meter Payment Type = A, M
or P, then the sub-code is the
unit ID of the Post Office.

If Meter Payment Type = S the
sub-code is 1000

securityModuleSerialNumber Attribute Y HSM serial number
securityModuleModelId Attribute Y HSM modNel ID
securityModuleSoftwareVersion Attribute N HSM software version
securityModuleFirmwareVersion Attribute N HSM firmware version
securityModuleTokenId Attribute N HSM token ID

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 14 of 35

4.1.3 EPM Trustmark image
In version 2 of the service the generate EPM will also return the EPM trustmark image. This image
can also be used in validation, but offers the convienence and asthetics of a trustmark image
instead of an XML string. This following is a sample trustmark image. This image may change and
is only a sample. The image will always include a transaction id, 578 in this case, and a date of
the postmark.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 15 of 35

5. Web Services
The EPM system is a hosted system that exposes EPM-specific operations through a web
service. The web service uses standard SOAP protocols in order to identify which operations are
to be performed and in order to communicate data. The service contract is defined by a standard
Web Service Definition Language (WSDL) document, which identifies web service, operation, and
parameter names and locations. A standard Extensible Markup Language (XML) Schema is also
referenced, which defines all of the USPS EPM data structures required to make use of the
service.

The SDK is designed to abstract these details and provide a simple interface to communicate with
the USPS EPM web service. For details on the SOAP service please reference the version 1 or 2
interface control document for the service.

5.1 Software Development Kit (SDK)
As a user of the SDK you can access either the version 1 or version 2 of the EPM web service.
The primary difference between the two versions is the Meta data and the security encryption
level of the service communication itself.

5.1.1 Requirements
Both a Java and a C#/.net version of the SDK are available for use in communicating with the
EPM web service.
A sample client for using either the Java or C#/.net SDK is included later in this document.

5.1.1.1 Java Requirements
When using the java version of the SDK you will need the following.

• The EPostmarkSDK.jar file
• Java version 1.8 JDK or greater
• If you would like to use version 2 of the service you will also need the “Java Cryptography

Extension (JCE) Unlimited Strength Jurisdiction Policy Files” from Oracle for the java JDK you are
using.

5.1.1.2 C# / .net requirements
When using the C# / .net version of the SDK you will need the following.

• FilePostmark.dll
• Visual Studio 2015 or greater
• The C# / .net SDK does not support version 2 of the service at this time.

5.1.1.3 General client inputs
The following are required for the client regardless of the technology platform.

• All messages between your organization and the USPS will be signed and encrypted. Part of this
process requires the use of your organization’s private/public key. One of the inputs to the service
is this key pair which will be used for signature and encryption/decryption purposes. For the Code-
A-Thon you will be provided with a java keystore that already contains this key pair. You can then
provide the SDK the required properties to use this key store. The details of which are covered
below per technology platform.

• The secondary information you will need to provide the SDK are the credentials provided to you
from the USPS during registration. These include your username and password, your account ID,
and your billing ID.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 16 of 35

• The third required item are the actual files or messages that you wish to postmark. These can be
provide as a string, in the case of a message, or a path to the file, in the case of a file.

• The final, and optional, item is the meta data. You can create an object containing metadata
related to your file. The supported meta data is either mail piece meta data or health care meta
data. The details of the metadata are covered in the USPS EPM Service V1.X Interface Document.

5.2 EPM Service Security
The USPS EPM system uses web service security standards (WS-SecurityPolicy) to secure the
messages being sent between the customer and the service. The security policy is defined in the
web service WSDL as part of the service contract and all clients must adhere to the security
policy. In order to make use of the service, customers must create or obtain a valid X.509
certificate and associated private key and provide the public certificate portion to the USPS as
part of the registration process.
The SDK interface allows you to include your client certificate as one of the paramters for
interacting with the service. The sections below provide some guidelines on setting up your
certificate for either the Java or C#/ .net clients.

5.2.1 Using the keystore with the Java SDK
You will need to provide a couple of key pieces of information to the Java SDK about your
keystore. These include the information about the keystore like the key alias and passwords you
used to secure the key. The below is provided as an example and follows the client example
below.
You will need a properties file. In this case I am calling it “client_sign.properties”
The contents describe your keystore.
org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
(if you select a different keystore type like bouncy castle, you will specifiy the type here)
org.apache.ws.security.crypto.merlin.keystore.password=client-pass
(this is your password for the keystore itself)
org.apache.ws.security.crypto.merlin.keystore.private.password=key-pass
(this is your password for your private key in the keystore)
org.apache.ws.security.crypto.merlin.keystore.alias=clientx509v1
(this is the alias you used in creating your key, see above -alias)
org.apache.ws.security.crypto.merlin.keystore.file=ClientKeyStore.jks
(this is the name of or your keystore file)

When you create the SDK client you will specify the name of the properties file and your signature username, which is the same as
your alias name for your certificate.
service.setClientKey(propertiesFileName, signatureUN);

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 17 of 35

5.2.2 Using the certificate with the C# / .net SDK
You will need to import the certificates into the windows certificate registry for the local user
First import the EPM Service certificate (public key)
Second import the client certificate (private and pulic key pair)

double click the cat-wss-server certificate and select "open"
push "install certificate" click next
on certificate store screen select "place all certifcates in the following store" option
click browse and pick "trusted root certification authorities"

click "next"
click "finish"
Click "yes" on the warning

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 18 of 35

now install the client certificate
double click dotNetSDK and click next twice
for the password enter "epmUSPS"
on certificate store screen select "place all certifcates in the following store" option
click browse and pick "trusted root certification authorities"

click "next"
click "finish"
click " yes" on both warnings

For the C# / .net SDK you need to set the certificate serial number. You can get the serial number
by double clicking on the certificate in windows and then clicking on the details tab.

In this case the value is “00F08FE96029930F6E1”. This is set in the SDK using the command.

postmark.setClientCertificateSerialNumber("00F08FE9602930F6EA");

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 19 of 35

5.3 SDK Interface
The following operations are available from the EPM SDK for both the Java and C#/ .net clients.

setCredentials(accountID, billingID, username, password);
This method allows for you to set you USPS credentials. The CredentialsConfig consists of you
username, password, accountID, and billingID.

getPostmarkForFile(fileName)
This method allows you to generate a EPM for a file. The filename is a local file path to the file you
want to add. The EPM postmark string is returned.

getPostmarkForByteArray(byte[])
This method allows you to generate a EPM for a byte array. The EPM postmark string is returned.

getPostmarkForMessage(message)
This method allows you to generate a EPM for a string message. The EPM postmark string is
returned.

Version 2 only methods

getEPostmarkForFile(fileName)
This method is supported for version 2 of the EPM Service. This method allows you to generate a
EPM for a file. The filename is a local file path to the file you want to add. The EPM postmark
string and the trustmark image are returned.

getEPostmarkForByteArray(byte[])
This method is supported for version 2 of the EPM Service. This method allows you to generate a
EPM for a byte array. The EPM postmark string and the trustmark image are returned

getEPostmarkForMessage(message)
This method is supported for version 2 of the EPM Service. This method allows you to generate a
EPM for a string message. The EPM postmark string and the trustmark image are returned

There are also some batch methods that let you generate or validate EPM postmarks in a batch.

addFileToPostmark(fileName);
This method allows you to add a file to generate a EPM. The filename is a local file path to the file
you want to add.

addByteArrayToPostmark(messageID, byte[]);
This method allows you to add a generic byte array to generate a EPM. The messageID is a
unique identifier for the byte array.

addMessageToPostmark(messageID, Message);
This method allows you to add a string message to generate a EPM. The messageID is a unique
identifier for the message.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 20 of 35

getAllPostmarks ();
This method will generate a EPM for each file, byte array, and message added. This will be
returned in a map/dictionary collection where the key is the filename or messageID and the value
is the EPM string.

getAllEPostmarks ();
This is a version 2 only method. This method will generate a EPM for each file, byte array, and
message added. This will be returned in a map/dictionary collection where the key is the filename
or messageID and the value is an object containing the EPM string and the trustmark image.

addFileToValidate(fileName, epmString);
This method allows you to add a file and EPM string to validate against. The filename is a local file
path to the file you want to add.

addByteArrayToValidate(messageID, byte[], epmString);
This method allows you to add a generic byte array and EPM string to validate against. The
messageID is a unique identifier for the byte array.

addMessageToValidate(messageID, Message, epmString);
This method allows you to add a string message and EPM string to validate against. The
messageID is a unique identifier for the message.

validateAllEPM
This method will validate the EPMs for each file, byte array, and message added. This will be
returned in a map/dictionary collection where the key is the filename or messageID and the value
is a Boolean value of true or false.

Version 2 of the service also allows you to validate the EPM using the trustmark image. The
following methods have been added to support this.

validatePostmarkImageForFile(String fileName, byte[] image)
This method allows you to add a file and EPM trustmark image to validate against. The filename is
a local file path to the file you want to add.

validatePostmarkImageForByteArray(byte[] bytes, byte[] image)
This method allows you to add a generic byte array and EPM trustmark image to validate against..

validatePostmarkImageForMessage(String message, byte[] image)
This method allows you to add a string message and EPM trustmark image to validate against.

getLastestValidationForEPM(epmString)
This method is available in version 2 of the service and allows the client to retireve the most
recent validation receipt for the given EPM XML string. The receipt includes the requestor name, if
the validation was successful, the EPM transation ID, and the timestamp of the validation request.
A NULL value will be returned if no validation receipts exist for the provided EPM string.

getAllValidationsForEPM(epmString)
This method is available in version 2 of the service and allows the client to retireve all of the
validation receipts for the given EPM XML string.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 21 of 35

Methods specific to the Java SDK
The Java SDK requires that you provide a keystore with your client certificate. This is covered
above. The method to provide this is.

setClientKey(propertiesFileName, signatureUN)

Methods specific to the C# / .net SDK
The C# / .net SDK requires that your client certificate be in the windows certificate keystore. You
then use the following method with the SDK to identify the certificate.

setClientCertificateSerialNumber(NumberAsString);

The C#/ .net SDK also allows the client to work with files in interacting with the EPM service. This
functionality will store the EPM results in a file that can then be used in subsequent validations.
The methods used for this interaction are listed below.

setWorkingDirectory(workingDirectory)
Sets the working directory for creating the EPM file

addPostmark()
After all files, links, and the message are added, this method generates the EPM file in the
directory set above. call getEpmFileName() to EPM file name of the generated file. The EPM file
will contain all of the EPMs generated in one file.

getEpmFileName()
returns the name of the generated file.

getPostmarkedFiles()
Gets a list of all data files, links and message to be postmarked. This also includes the status of
the EPM if it was requested. The list is a collection of EpmFile objects.

validatePostmark()
After all files, links, the message and the EPM file are added, this method makes sure all data files
are valid. If any of the files of the files is not valid, an exception is thrown. If any file cannot be
validated, error details are returned in the postmarked files list. This requires that the EPM file
name be specified using setEPMFile.

setEPMFile(fileName)
This sets the name of the EPM to use with the validation. Throws an exception if file name is
blank or if not a valid EPM file name

5.3.1 Process to use SDK
The process to use the SDK is simple and is outlined below.

The sample code in the following sections mirrors this process.

• The first step is to set you key configuration. This allows the SDK to access and use your
private/public key pair in communicating with the EPM service.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 22 of 35

• The second step is to set your credentials. These are the credentials that the USPS gave you as part
of the registration process.

• The third step is to add the files and/or messages that you want to postmark.
• After this you can call the service method to getAllEPostmarks. This will take each file or message

and use the EPM service to obtain a postmark for it. It will then return a hash map with a key of
the message or file name, and a value of the Electronic postmark in XML. If you are using the
version 2 method you will also get the EPM trustmark image.

• You can then send or store this pair for future use.
The validation process is also very simple.

• A client can use the SDK to request validation of a postmark against a file, message, or byte array
by using either the appropriate methods.

• In version 2, you can also use the methods to validate using the trustmark image.
• This will return a simple true or false if the file successfully validates

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 23 of 35

5.3.1.1 Sample Java Client
import java.util.Map;
import java.util.Map.Entry;

import com.usps.epm.EPMServiceFactory;
import com.usps.epm.EPMServiceV1;

public class EPMClientV1 {

 public static void main(String args[]) throws java.lang.Exception {

 EPMServiceFactory serviceFactory = new EPMServiceFactory();

 EPMServiceV1 service = serviceFactory.getEPMServiceV1();
 // Setup the information about your client PKI certificate properties
 service.setClientKey("client_sign.properties", "clientx509v1");
 // Setup the information about your USPS EPM service credentials
 service.setCredentials("CODE-A-THON-JAVA-SDK-001", "CODE-A-THON-JAVA-SDK-001", "code-a-thon-
java-sdk", "dw98@B2ekEGYm5y");

 // example add a text file
 String fileID1 = "C:/Dev/hello2.txt";
 service.addFileToPostmark(fileID1);
 // example add a binary file
 String fileID2 = "C:/Dev/gatorhood.jpg";
 service.addFileToPostmark(fileID2);
 // example add a string message
 String messageID1 = "myMessage";
 String messageContent = "The Apple";
 service.addMessageToPostmark(messageID1, messageContent);
 // example add a byte array
 String messageID2 = "myBytes";
 byte[] messageContent2 = "The quick brown Fox".getBytes();
 service.addByteArrayToPostmark(messageID2, messageContent2);
 // Get a MAP with key of your file or message ID and a value of the EPM XML string
 Map<String, String> allEPostmarks = service.getAllPostmarks();

 for(Entry<String, String> entry : allEPostmarks.entrySet()) {
 // loop through the results and print the postmarks
 // normally the postmark would be saved with the original file for future validation
 String key = entry.getKey();

 String value = entry.getValue();

 System.out.println("For File = ["+key+"]");
 System.out.println("Postmark = ["+value+"]");
 }
 System.exit(0);
 }

}

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 24 of 35

5.3.1.2 Sample C#/ .net client
This sample application instantiates the postmark object, adds a data file to be postmarked, and
then call the addPostmark() method so the postmark file is created. It then calls getAllPostmarks
to get the file name and the corresponding postmark hash.

using System;
using System.IO;
namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 Console.WriteLine("Testing File EPM");
 string filePath = @"C:\dev\hello2.txt";
 Postmark postmark = new Postmark();
 postmark.setCredentials("CODE-A-THON-DOTNET-SDK-001", " CODE-A-THON-
DOTNET-SDK-001", "code-a-thon-dotnet-sdk", "dw98@B2ekEGYm5y");
 postmark.setClientCertificateSerialNumber("00dfc5608efcd6b61e");
 string epmString = postmark.getPostmarkForFile(filePath);
 Console.WriteLine(epmString);
 Console.WriteLine();
 bool valid = postmark.validatePostmarkForFile(filePath, epmString);
 Console.WriteLine("Validation: " + Convert.ToString(valid));
 Console.WriteLine();
 Console.WriteLine("Testing message EPM");
 string testMessage = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 epmString = postmark.getPostmarkForMessage(testMessage);
 Console.WriteLine(epmString);
 Console.WriteLine();
 valid = postmark.validatePostmarkForMessage(testMessage, epmString);
 Console.WriteLine("Validation: " + Convert.ToString(valid));
 Console.WriteLine();
 Console.WriteLine("Testing byte array EPM");
 byte[] byteArray = { 2, 3, 5, 7, 11, 13, 17, 23 };
 epmString = postmark.getPostmarkForByteArray(byteArray);
 Console.WriteLine(epmString);
 Console.WriteLine();
 valid = postmark.validatePostmarkForByteArray(byteArray, epmString);
 Console.WriteLine("Validation: " + Convert.ToString(valid));
 Console.WriteLine();
 byte[] imageEPM = postmark.getEPostmarkForFile(filePath);
 File.WriteAllBytes(@"C:\dev\TestEPM1.jpg", imageEPM);
 valid = postmark.validatePostmarkImageForFile(filePath, imageEPM);
 Console.WriteLine("Image File Validation: " +
Convert.ToString(valid));
 imageEPM = postmark.getEPostmarkForMessage(testMessage);
 File.WriteAllBytes(@"C:\dev\TestEPM2.jpg", imageEPM);
 valid = postmark.validatePostmarkImageForMessage(testMessage,
imageEPM);
 Console.WriteLine("Image Message Validation: " +
Convert.ToString(valid));
 imageEPM = postmark.getEPostmarkForByteArray(byteArray);
 File.WriteAllBytes(@"C:\dev\TestEPM3.jpg", imageEPM);
 valid = postmark.validatePostmarkImageForByteArray(byteArray,
imageEPM);
 Console.WriteLine("Image Byte Array Validation: " +
Convert.ToString(valid));
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: " + e.Message);
 }
 Console.ReadKey();
 }
 }
}

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 25 of 35

5.4 Trouble shooting common error conditions
The EPM web service uses the SOAP fault data structure to return errors to the client. The SDK
catches these errors and prints out the error code, ID, and message to the console. The errors will
appears in this format.

Failed to generate EPM: A service error has occurred.
Error Code = 10, Error ID = 15188,
Error Message = Username or password is invalid.

The following table list the possible errors.
Error
Code Error Message Error Condition / Notes

100 Requester account id is invalid. The requester account id specified for the
requesting party is not valid.

101 Requester account id is not authorized to
make this request.

The account id specified for the requesting
party is not authorized to perform the
function as defined by the incoming request.

110 Given customer account id is invalid for
this request.

The billing account id provided in the request
is not associated with a billing account in the
system or is not allowed to perform the
requested operation.

111 Specified customer account has not been
activated.

The billing account id provided in the request
is associated with a customer account that
has not yet been activated or has been
retired.

112 Specified customer account has been
locked.

There is an issue with the customer account
associated with the provided billing account
id and the issue must be resolved before any
requests will be processed.

200 Missing required field(s) or invalid field
value(s).

One or more pieces of input data have failed
validation. Required data may be missing or a
data value may be invalid. If this error code is
returned, the FaultDetail element will
contain a child DataAttributeError element.
The DataAttributeError element will identify
the name of the input field that failed
validation and the reason for the failure.
Failure reasons are defined in the EPM XML
schema and include:
MISSING_REQUIRED_VALUE and
INVALID_DATA.

900 Unable to process request due to an
internal system error.

An unexpected system error has occurred
during processing that prevented the
transaction from completing.

5.4.1 Issues with your certificate
If you receive an error like the following, there may be an issue with your certificate.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 26 of 35

Exception in thread "main" javax.xml.ws.soap.SOAPFaultException: A security
error was encountered when verifying the message

5.4.2 Issues with your message
If you are missing information in your message you may receive an error like the following.

Failed to generate EPM: A service error has occurred.
Error Code = 200, Error ID = 15191,
Error Message = Missing required field(s) or invalid field value(s),
Fields: [payloadData]

In this case I did not attach a file to postmark

5.4.3 Validation error for EPM service V1
Version 1 of the EPM service reports a SOAP fault when validation fails. If you receive the
following error, then it means that the file and EPM you sent for validation do not match.

Failed to validate EPM: A service error has occurred.
Error Code = 220, Error ID = null,
Error Message = Validation of EPM data has failed

This will also return a false value. For the V2 of the service you wont see the above message in
the logs and only the false value will be returned.

As part of the SDK design all SOAP faults on the validation call will return a value of false for
validation, regardless of the type of SOAP fault.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 27 of 35

5.5 Using the EPM web service
5.5.1 Customer Registration
Customer registration is a process by which the USPS creates a billing account for the customer
and the customer is provided with a unique identifier for use in billing and making requests to the
EPM web service. In general, the registration process consists of:

1. Setting up a billing account through the USPS billing process and obtaining a set of USPS EPM
credentials (username and password)

2. Creating or obtaining a valid X.509 certificate and associated private key and providing the
certificate to the USPS

3. Obtaining the USPS EPM X.509 certificate

5.5.2 Credentials for the Healthcare Code-A-Thon

.NET SDK
u/n: code-a-thon-dotnet-sdk
p/w: dw98@B2ekEGYm5y

RequesterAccountId: CODE-A-THON-DOTNET-SDK-001
BillingAccountId: CODE-A-THON-DOTNET-SDK-001

Java SDK
u/n: code-a-thon-java-sdk
p/w: dw98@B2ekEGYm5y

RequesterAccountId: CODE-A-THON-JAVA-SDK-001
BillingAccountId: CODE-A-THON-JAVA-SDK-001

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 28 of 35

6. Appendix A – EPM XML Schemas

6.1 Links to WSDL and Schema locations

• Main WSDLs
o https://epm.usps.post/epm/services/epmWebService-v1?wsdl
o https://epm.usps.post/epm/services/epmWebService-v2?wsdl

• WS-Security policy
o https://epm.usps.post/epm/services/epmWebService-v1?wsdl=des-ws-security-policy-

v2.0.wsdl
o https://epm.usps.post/epm/services/epmWebService-v2?wsdl=epm-ws-security-policy-

v3.0.wsdl
• XSD with element and metadata

o https://epm.usps.post/epm/services/epmWebService-v1?xsd=usps-des-shared-model-
v2.0.xsd

o https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-
v3.0.xsd

o https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-
common.xsd

https://epm.usps.post/epm/services/epmWebService-v1?wsdl
https://epm.usps.post/epm/services/epmWebService-v2?wsdl
https://epm.usps.post/epm/services/epmWebService-v1?wsdl=des-ws-security-policy-v2.0.wsdl
https://epm.usps.post/epm/services/epmWebService-v1?wsdl=des-ws-security-policy-v2.0.wsdl
https://epm.usps.post/epm/services/epmWebService-v2?wsdl=epm-ws-security-policy-v3.0.wsdl
https://epm.usps.post/epm/services/epmWebService-v2?wsdl=epm-ws-security-policy-v3.0.wsdl
https://epm.usps.post/epm/services/epmWebService-v1?xsd=usps-des-shared-model-v2.0.xsd
https://epm.usps.post/epm/services/epmWebService-v1?xsd=usps-des-shared-model-v2.0.xsd
https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-v3.0.xsd
https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-v3.0.xsd
https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-common.xsd
https://epm.usps.post/epm/services/epmWebService-v2?xsd=usps-epm-shared-model-common.xsd

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 29 of 35

7. Appendix B - Setup the sample Java client using the SDK in Eclipse
For this example I am using

• Eclipse Mars release
• Sun Java JDK 1.8

7.1 Steps
Create a new dynamic web project

Fill in the project name and leave the default values.

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 30 of 35

Create a new resources source folder

Create a new client class

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 31 of 35

Add the sample client code from above, adjust the samples files as needed

You will notice a lot of errors, the next step is to import the EPM SDK

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 32 of 35

Add the external jar for EMP under the project porperties in the java build path screen.

In the resources folder add you java keystore with your public/private key and the config file

Make sure the properties file contains the correct values for your java keystore
For example only…
org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=client-pass
org.apache.ws.security.crypto.merlin.keystore.private.password=key-pass
org.apache.ws.security.crypto.merlin.keystore.alias=clientx509v1
org.apache.ws.security.crypto.merlin.keystore.file=ClientKeyStore.jks

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 33 of 35

Set you credentials in the sample client

You should now be able to run the sample client

If you see errors consult the trouble shooting section

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 34 of 35

8. Appendix C – Setup the sample .Net client using Visual Studio 2015

8.1 Steps

Create a new console application

Electronic Postmark Service SDK v1.0 – Secure Digital Platform

USPS Page 35 of 35

Add reference to FilePostmark.dll:

You are now able to add your client.

	1. Purpose
	2. Electronic Postmark System Overview
	2.1 EPM Service Overview

	3. Use Cases
	3.1 General Electronic Data Postmarking
	3.2 EPM Generation
	3.2.1 Process Flow

	3.3 EPM validation
	3.3.1 Process Flow

	3.4 Trustmark validation
	3.4.1 Process Flow

	3.5 Query EPM validation results
	3.5.1 Process Flow

	4. Electronic Postmark (EPM) Data Structures and Processing
	4.1 EPM Data Structure and Format
	4.1.1 Example EPM XML response
	4.1.2 Electronic Postmark
	4.1.3 EPM Trustmark image

	5. Web Services
	5.1 Software Development Kit (SDK)
	5.1.1 Requirements
	5.1.1.1 Java Requirements
	5.1.1.2 C# / .net requirements
	5.1.1.3 General client inputs

	5.2 EPM Service Security
	5.2.1 Using the keystore with the Java SDK
	5.2.2 Using the certificate with the C# / .net SDK

	5.3 SDK Interface
	5.3.1 Process to use SDK
	5.3.1.1 Sample Java Client
	5.3.1.2 Sample C#/ .net client

	5.4 Trouble shooting common error conditions
	5.4.1 Issues with your certificate
	5.4.2 Issues with your message
	5.4.3 Validation error for EPM service V1

	5.5 Using the EPM web service
	5.5.1 Customer Registration
	5.5.2 Credentials for the Healthcare Code-A-Thon

	6. Appendix A – EPM XML Schemas
	6.1 Links to WSDL and Schema locations

	7. Appendix B - Setup the sample Java client using the SDK in Eclipse
	7.1 Steps

	8. Appendix C – Setup the sample .Net client using Visual Studio 2015
	8.1 Steps

